BENZAZOLES. 3*. SYNTHESIS AND ARYLSULFONYLATION OF 2-SUBSTITUTED BENZIMIDAZOLES

K. B. Abdireimov¹, N. S. Mukhamedov¹**, M. Zh. Aiymbetov¹, and Kh. M. Shakhidoyatov¹

2-Alkylbenzimidazoles have been obtained from o-nitroaniline and aliphatic carboxylic acids by reductive cyclization. Interaction of the former with arenesulfonyl chlorides led to the synthesis of 2-alkyl-1-arylsulfonylbenzimidazoles, the yield of which depended on the structure of the substituent in position 2.

Keywords: 2-alkyl-1-arylsulfonylbenzimidazoles, 2-alkylbenzimidazoles, arylsulfonylation, reductive cyclization.

The high biological activity and broad spectrum of action of benzimidazole derivatives [2-8] has caused increased interest in them. Among 2-substituted benzimidazoles are found substances possessing antitumor, hypotensive, spasmolytic, neuroleptic, and antibacterial action [2-6], and also herbicidal, fungicidal, and growth stimulating activity [7, 8].

Communications have appeared recently on the synthesis of 2-cycloalkyl(aralkyl)benzimidazoles and sulfonylation of the latter with methane- and benzenesulfonyl chlorides [9]. Similar reactions for 2-alkylbenz-imidazoles have not been studied. Continuing our investigations on the synthesis and conversion of benzazoles [1], in this work we have synthesized 2-alkylbenzimidazoles **2a-e** and have studied their interaction with arene sulfonyl chlorides.

2-Alkylbenzimidazoles were obtained previously from o-phenylenediamine and the appropriate acids [10].

Compounds **2a-e** were synthesized by us from *o*-nitroaniline (1) and aliphatic acids by reductive cyclization using iron powder and hydrochloric acid. The interaction of products **2a-e** with arene sulfonyl chlorides in the presence of triethylamine at room temperature led to 2-alkyl-1-arylsulfonyl benzimidazoles **3a-e** and **8a-e** (Table 1).

It should be noted that with the lengthening of the substituent R the yields of compounds **3a-e** and **8a-e** were reduced. This is probably explained by the action of steric factors. Substitution in Ar did not have a significant influence on the course of the reaction.

* For Communication 2, see [1].

** To whom correspondence should be addressed, e-mail: nasirxon@rambler.ru.

¹ S. Yu. Yunusov Institute of Chemistry of Plant Substances, Academy of Sciences of the Republic of Uzbekistan, Tashkent 100170, Uzbekistan.

Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 8, pp. 1165-1172, August, 2010. Original article submitted January 26, 2010.

0009-3122/10/4608-0941©2010 Springer Science+Business Media, Inc.

2–8 a R = H, b R = Me, c R = Et, d R = Pr, e R = Bu; **3a–e** Ar = 4-MeC₆H₄; **4a–e** Ar = 4-MeOC₆H₄; **5a–e** Ar = 4-ClC₆H₄; **6a–e** Ar = 4-*t*-BuC₆H₄; **7a–e** Ar = 3,4-Me₂C₆H₃; **8a–e** Ar = 2,4,6-Me₃C₆H₂

Com- pound	Empirical formula	Found, % Calculated, % N	mp, °C*	Yield, %
1	2	3	4	5
3a	$C_{14}H_{12}N_2O_2S$	$\frac{10.58}{10.29}$	86-88	86
3b	$C_{15}H_{14}N_2O_2S$	$\frac{10.01}{9.79}$	122-124	77
3c	$C_{16}H_{16}N_{2}O_{2}S$	$\frac{9.03}{9.33}$	148-150	68
3d	$C_{17}H_{18}N_2O_2S\\$	<u>9.26</u> 8.91	102-104	54
3e	$C_{18}H_{20}N_{2}O_{2}S$	$\frac{8.17}{8.53}$	118-120	32
4a	$C_{14}H_{12}N_2O_3S$	$\frac{10.11}{9.72}$	92-94	97
4b	$C_{15}H_{14}N_2O_3S$	$\frac{8.83}{9.24}$	132-134	85
4c	$C_{16}H_{16}N_2O_3S$	$\frac{9.12}{8.86}$	138-140	76
4d	$C_{17}H_{18}N_2O_3S$	$\frac{8.64}{8.48}$	84-86	67
4e	$C_{18}H_{20}N_{2}O_{3}S$	$\frac{8.51}{8.13}$	86-88	62
5a	$C_{14}H_{11}ClN_2O_2S$	<u>9.26</u> 9.58	125-127	96
5b	$C_{15}H_{13}ClN_2O_2S$	$\frac{8.83}{9.12}$	152-153	79
5c	$C_{16}H_{15}ClN_2O_2S$	$\frac{8.38}{8.75}$	172-174	68
5d	$C_{17}H_{17}ClN_2O_2S$	$\frac{8.13}{8.38}$	140-142	61
5e	$C_{18}H_{19}ClN_2O_2S$	$\frac{7.78}{8.04}$	154-156	56
6a	$C_{17}H_{18}N_{2}O_{2}S$	<u>9.25</u> 8.91	127-128	76
6b	$C_{18}H_{20}N_{2}O_{2}S$	$\frac{8.17}{8.53}$	132-134	70
6c	$C_{19}H_{22}N_2O_2S$	<u>8.51</u> 8.18	137-138	63
6d	$C_{20}H_{24}N_2O_2S$	$\frac{8.09}{7.86}$	111-113	58
6e	$C_{21}H_{26}N_{2}O_{2}S \\$	<u>7.67</u> 7.56	115-116	52
7a	$C_{15}H_{14}N_2O_2S$	$\frac{10.02}{9.79}$	115-117	89
7b	$C_{16}H_{16}N_2O_2S$	<u>9.12</u> 9.33	82-84	80
7c	$C_{17}H_{18}N_2O_2S$	<u>9.32</u> 8.91	73-75	75

TABLE 1. Physicochemical Characteristics of the Synthesized Compounds **3a-e – 8a-e**

1	2	3	4	5
7d	$C_{18}H_{20}N_2O_2S$	<u>8.26</u> 8.53	86-88	64
7e	$C_{19}H_{22}N_2O_2S$	$\frac{8.42}{8.18}$	98-100	58
8a	$C_{16}H_{16}N_{2}O_{2}S \\$	<u>8.98</u> 9.33	120-122	72
8b	$C_{17}H_{18}N_2O_2S$	<u>9.17</u> 8.91	121-122	64
8c	$C_{18}H_{20}N_{2}O_{2}S$	$\frac{8.81}{8.53}$	126-127	58
8d	$C_{19}H_{20}N_2O_2S$	$\frac{7.86}{8.18}$	96-98	53
8e	$C_{20}H_{20}N_2O_2S$	<u>8.19</u> 7.86	66-68	47

TABLE 1 (continued)

* Solvents for recrystallization: ethanol (compounds **3a-e**, **4a-e**, **5a,b,d,e**, **6e**, **7a,c-e**, **8a-e**), aqueous ethanol (compound **5c**), benzene (compounds **6a-d**), petroleum ether (compound **7b**).

The composition and structure of the synthesized compounds **3a-e** and **8a-e** were confirmed by the results of elemental analysis, data of IR, mass, and ¹H NMR spectra.

There were characteristic absorption bands in the IR spectra of compounds **3-8** for the asymmetric and symmetric stretching vibrations of the SO₂ group in the 1100-1400 cm⁻¹ region (Table 2).

Peaks were observed in the mass spectra of compounds **3a-e** to **8a-e** for molecular ions and fragments confirming completely the structures proposed. The direction of fragmentation of the molecular ions of compounds **3a-e** to **8a-e** depended on the nature of the substituent R and did not depend on the character of the substitution in Ar. The mass spectra of compounds **3a-c** to **8a-c** showed a single type of fragmentation with cleavage of the ArSO₂-Het bond, leading to $[M-ArSO₂]^+$ and $[M-Het]^+$ fragments with the former possessing maximal intensity. In the mass spectra of compounds **3d,e** to **8d,e** (R = Pr, Bu) cleavage of the substituent R occurs first and then ArSO₂.

The ¹H NMR spectra of compounds **3a-e** to **8a-e** (Table 2) contain the following signals characteristic of the benzimidazole fragment: signals of the H-4 and H-7 protons as two doublets (in the 7.55-8.01 ppm region), multiplet signals of the H-5 and H-6 protons (at 7.22-8.81 ppm), and a low field singlet for the H-2 proton (8.30-8.61 ppm). There were also signals in the spectra for the H_{Ar} protons (6.85-7.45), and for H_R protons, and for alkyl substituents in Ar (0.78-3.74 ppm).

Com-	IR spectru	m, v, cm^{-1}		Mass spectrum,
pound	SO ₂ (as)	SO_2 (s)	¹ H NMR spectrum, δ , ppm (J , Hz)*	m/z, [M] ⁺ $(I_{ m rel}, \%)$
1	2	3	4	5
3a	1352	1165	8.32 (1H, s, H-2); 7.85 (3H, m, H-4,5,6); 7.70 (1H, dd, $J_{7,5} = 8.3, J_{7,6} = 3.6, H-7$); 7.45 (4H, m, C ₆ H ₄); 2.30 (3H, s, C ₆ H ₄ C <u>H</u> ₃)	272 (71)
3b	1372	1173	7.95 (1H, dd, $J_{4,5} = 8.3$, $J_{4,6} = 2.1$, H-4); 7.74 (2H, m, H-5,6); 7.55 (1H, dd, $J_{7,5} = 2.1$, $J_{7,6} = 8.3$, H-7); 7.25 (4H, m, C ₆ H ₄); 2.75 (3H, s, 2-CH ₃); 2.30 (3H, s, C ₆ H ₄ CH ₃)	286 (69)
3с	1375	1168	7.99 (1H, dd, $J_{4,5} = 8.3$, $J_{4,6} = 2.2$, H-4); 7.72 (2H, m, H-5,6); 7.61 (1H, dd, $J_{7,5} = 2.2$, $J_{7,6} = 8.3$, H-7); 7.25 (4H, m, C ₆ H ₄); 3.15 (2H, q, $J = 7.1$; 2-CH-CH ₃); 2.30 (3H, s. C ₇ H ₄ CH ₃); 1.38 (3H, t, $J = 7.1$, 2-CH-CH ₃); 7.25 (4H, m, C ₆ H ₄);	300 (58)
3d	1369	1171	7.97 (1H, dd, $J_{4,6} = 2.2$, $J_{4,5} = 8.3$, H-4); 7.72 (2H, m, H-5,6); 7.59 (1H, dd, $J_{7,5} = 2.2$, $J_{7,6} = 8.3$, H-7); 7.24 (4H, m, $C_{6H,4}$); 3.11 (2H, q, $J = 7.3$, 2-CH ₃); 2.30 (3H, s, $C_{6H,2(H_3)}$; 1.85 (2H, q, $J = 7.3$, 2-CH ₃); 0.95 (3H, t, $J = 7.3$, 2-C ₃ H ₄ (H);	314 (67)
3e	1367	1163	7.98 (1H, dd, $J_{4,6} = 2.3$, $J_{4,5} = 8.1$, H-4); 7.75 (2H, m, H-5,6); 7.60 (1H, dd, $J_{7,5} = 2.3$, $J_{7,6} = 8.1$, H-7); 7.25 (4H, m, C_{6H_4}); 3.10 (2H, t, $J = 7.3$, 2-CH ₅); 2.30 (3H, s, C_{6H_4} CH ₅); 1.82 (2H, m, 2-CH ₂ CH ₂); 1.40 (2H, m, 2-C_{2H_4}CH ₅); 0.89 (3H, t, $J = 7.3$, 2-C ₄ H ₆ CH ₃)	328 (63)
4a	1378	1162	8.32 (1H, s, H-2); 7.87 (2H, m, H-4,5); 7.79 (1H, dd, $J_{6,4}$ = 2.2, $J_{6,7}$ = 7.5, H-6); 7.70 (1H, d, $J_{7,6}$ = 7.5, H-7); 7.32 (2H, m, C ₆ H ₄); 6.88 (2H, m, C ₆ H ₄); 3.79 (3H, s, OCH ₃)	288 (69)
4b	1373	1166	7.95 (1H, dd, $J_{4,6} = 2.9$, $J_{4,5} = 7.9$; H-4); 7.79 (2H, m, H-5,6); 7.55 (1H, dd, $J_{7,5} = 2.9$, $J_{7,6} = 7.9$; H-7); 7.25 (2H, m, $G_{6}H_4$); 6.87 (2H, m, $G_{6}H_4$); 3.78 (3H, s, OCH ₃); 2.78 (3H, s, 2-CH ₃)	302 (72)
4c	1375	1167	7.96 (1H, dd, $J_{4,6} = 2.9$, $J_{4,5} = 7.9$, H-4); 7.78 (2H, m, H-5,6); 7.61 (1H, dd, $J_{7,5} = 2.9$, $J_{7,6} = 7.9$, H-7); 7.25 (2H, m, C ₆ H ₄); 6.86 (2H, m, C ₆ H ₄); 3.74 (3H, s, OCH ₃); 3.12 (2H, q, $J = 7.1$, 2-CH ₃); 1.39 (3H, t, $J = 7.1$, 2-CH ₃ CH ₃)	316 (59)
4d	1380	1169	7.96 (1H, dd, $J_{4,6} = 2.9$, $J_{4,5} = 7.6$, H-4); 7.77 (2H, m, H-5,6); 7.59 (1H, dd, $J_{7,5} = 2.9$, $J_{7,6} = 8.3$, H-7); 7.25 (2H, m, C ₆ H ₄); 6.87 (2H, m, C ₆ H ₄); 3.73 (3H, s, OCH ₃); 3.06 (2H, t, $J = 7.5$, 2-CH ₃); 1.91 (2H, q, $J = 7.5$, 2-CH ₂ CH ₃); 0.99 (3H, t, $J = 7.5$, 2-CH ₂ CH ₄)	330 (42)
4e	1382	1179	7.97 (1H, dd, $J_{4,6} = 2.5$, $J_{4,6} = 8.7$, H-4); 7.78 (2H, m, H-5,6); 7.61 (1H, dd, $J_{7,5} = 2.5$, $J_{7,6} = 8.7$, H-7); 7.25 (2H, m, G ₆ H ₄); 6.85 (2H, m, G ₆ H ₄); 3.73 (3H, s, OCH ₃); 3.09 (2H, t, $J = 7.5$, 2-CH ₂); 1.83 (2H, m, 2-CH ₂ CH ₂); 1.44 (2H, m, 2-C ₂ H ₄ CH ₂); 0.93 (3H, t, $J = 7.5$, 2-C ₃ H ₆ CH ₃);	344 (11)
5a	1365	1162	8.63 (1H, s, H-2); 8.05 (2H, m, H-4,5); 7.85 (1H, dd, $J_{6,4} = 2.1, J_{6,7} = 8.1, H-6)$; 7.65 (1H, dd, $J_{7,5} = 2.1, J_{7,6} = 8.1, H-7)$; 7.55 (2H, m, $C_{6}H_{4}$); 7.35 (2H, m, $C_{6}H_{4}$); 7.35 (2H, m, $C_{6}H_{4}$); 7.46 (1H, dd, $J_{7,5} = 2.1, J_{7,6} = 8.1, H-7$);	292 (25)
5b	1377	1172	7.97 (1H, dd, $J_{4,6} = 2.2$, $J_{4,5} = 8.2$, H-4); 7.81 (2H, m, H-5,6); 7.60 (1H, dd, $J_{7,5} = 2.2$, $J_{7,6} = 8.2$, H-7); 7.41 (2H, m, C ₆ H ₄); 7.15 (2H, m, C ₆ H ₄), 2.76 (3H, s, 2-CH ₃)	306 (100)
50	1362	1166	7.99 (1H, dd, $J_{4,6} = 2.2$, $J_{4,5} = 8.2$, H-4); 7.80 (2H, m, H-5,6); 7.65 (1H, dd, $J_{7,5} = 2.2$, $J_{7,6} = 8.2$, H-7); 7.36 (2H, m, C ₆ H ₄); 7.16 (2H, m, C ₆ H ₄), 3.21 (2H, q, $J = 7.3$, 2-CH ₂); 1.39 (3H, t, $J = 7.3$, 2-CH ₂ CH ₁)	320 (68)
5d	1377	1164	7.98 (1H, dd, $J_{4,6} = 2.1$, $J_{4,5} = 8.2$, H-4); 7.81 (2H, m, H-5,6); 7.61 (1H, dd, $J_{7,5} = 2.1$, $J_{7,6} = 8.2$, H-7); 7.35 (2H, m, $G_{6}H_4$); 7.17 (2H, m, $G_{6}H_4$); 3.05 (2H, t, $J = 7.5$, 2- CH_2); 1.84 (2H, q, $J = 7.5$, 2- CH_2 CH ₂); 0.98 (3H, t, $J = 7.5$, 2- C_2H_4 CH ₄);	334 (34)
6a	1381	1171	8.33 (1H, s, H-2); 7.85 (3H, m, H-4,5,6); 7.71 (1H, dd, $J_{7,5} = 2.1$, $J_{7,6} = 8.2$, H-7); 7.45 (2H, m, C ₆ H ₄); 7.32 (2H, m, C ₆ H ₄); 1.20 (9H, s, C(CH ₃);)	314 (68)

– 8a-e
ompounds 3a-e
\mathbf{O}
of
Characteristics
Spectral
Е 2 .
\BL]
ΤÞ

1	2	3	4	5
6b	1366	1177	7.99 (1H, dd, $J_{4,6} = 2.1, J_{4,5} = 8.6, H-4$); 7.78 (2H, m, H-5,6); 7.57 (1H, dd, $J_{7,5} = 2.1, J_{7,6} = 8.2, H-7$); 7.43 (2H, m, C ₆ H ₄); 7.26 (2H, m, C ₆ H ₄); 7.26 (3H, s. 2-CH ₃); 1.20 (9H, s. C(CH ₃) ₁)	328 (76)
96	1375	1170	8.01 (1H, dd, $J_{4,6} = 2.2$, $J_{4,5} = 8.2$, H-4); 7.76 (2H, m, H-5,6); 7.61 (1H, dd, $J_{7,5} = 2.2$, $J_{7,6} = 8.2$, H-7); 7.42 (2H, m, C ₆ H ₄); 7.26 (2H, m, C ₆ H ₄); 7.315 (2H, q, $J = 7.3$, 2-CH ₅); 1.39 (3H, t, $J = 7.3$, 2-CH ₅); 1.30 (3H, e, C(CH)); 1.21 (9H, e, C(CH)).	342 (56)
6 d	1376	1169	7.98 (1H, dd, $J_{4,6} = 2.4$, $J_{4,5} = 8.5$, H-4); 7.75 (2H, m, H-5,6); 7.60 (1H, dd, $J_{7,5} = 2.4$, $J_{7,6} = 8.5$, H-7); 7.42 (2H, m, C ₆ H ₄); 7.26 (2H, m, C ₆ H ₄); 3.08 (2H, t, $J = 7.5$, 2-CH ₂ O, q, $J = 7.5$, 2-CH ₂ OH, q, $J = 7.5$, 2-CH ₂ OH, s, C(CH ₃)); 0.99 (3H, t, $J = 7.5$, 2-C, J_{4} CH ₃)	356 (41)
6e	1372	1165	8.01 (1H, dd, $J_{4,6} = 2.3$, $J_{4,5} = 8.8$, H-4); 7.75 (2H, m, H-5,6); 7.61 (1H, dd, $J_{7,5} = 2.3$, $J_{7,6} = 8.8$, H-7); 7.42 (2H, m, $C_{6}H_{3}$); 7.27 (2H, m, $C_{6}H_{3}$); 3.12 (2H, t, $J = 7.3$, 2-CH ₃); 1.81 (2H, m, 2-CH ₂ CH ₃); 1.41 (2H, m, 2-C ₂ H ₄ CH ₃); 1.21 (9H, s, C(CH ₃); 0.89 (3H, t, $J = 7.3$, 2-C,H ₆ CH ₃)	370 (12)
7a	1375	1167	8.61 (1H, s, H-2); 7.81 (2H, m, H-4,5); 7.78 (1H, d, $J_{6,4} = 2.1$, H-6); 7.74 (1H, dd, $J_{7,5} = 2.1$, $J_{7,6} = 8.5$, H-7); 7.32 (3H, m, C ₆ H ₃); 2.02 (6H, s, C ₆ H ₃ (CH ₃))?	286 (63)
Лb	1369	1164	7.92 (1H, dd, $J_{4,6} = 2.1$, $J_{4,5} = 8.4$, H-4); 7.64 (2H, m, H-5,6); 7.45 (1H, dd, $J_{7,5} = 2.2$, $J_{7,6} = 8.4$, H-7); 7.25 (3H, m, C_6H_3); 2.57 (3H, s, 2-CH ₃); 2.15 (6H, s, $C_6H_3(CH_3)_2$)	300 (71)
7c	1372	1159	7.97 (1H, dd, $J_{4,6} = 2.3$, $J_{4,5} = 8.7$, H-4); 7.59 (3H, m, H-5,6,7); 7.28 (3H, m, C ₆ H ₃); 3.18 (2H, q, $J = 7.4$, 2-CH ₂); 2.20 (6H, s, C ₆ H ₃ (CH ₃);); 1.33 (3H, t, $J = 7.4$, 2-CH ₂ CH ₃)	314 (52)
7d	1365	1165	7.96 (1H, dd, $J_{4,6} = 2.1, J_{4,5} = 8.4, H-4$); 7.60 (3H, m, H-5,6,7); 7.23 (3H, m, C ₆ H ₃); 3.12 (2H, t, $J = 7.4, 2$ -CH ₂); 2.21 (6H, s, C ₆ H ₃ (C <u>H₃)</u> ; 1.81 (2H, q, $J = 7.4, 2$ -CH ₂ CH ₂); 0.96 (3H, t, $J = 7.4, 2$ -C ₅ H ₄ CH ₃)	328 (39)
7e	1368	1163	7.98 (1H, dd, $J_{4,6} = 2.6$, $J_{4,5} = 8.7$, H-4); 7.58 (3H, m, H-5,6,7); 7.31 (3H, m, C ₆ H ₃); 3.13 (2H, t, $J = 7.4$, 2-CH ₃); 2.24 (6H, s, $C_{6}H_{5}(EH_{3})_{2}$); 1.75 (2H, m, 2-CH ₂); 1.40 (2H, m, 2- $C_{5}H_{4}CH_{3}$); 0.90 (3H, t, $J = 7.4$, 2- $C_{3}H_{5}CH_{3}$);	342 (17)
8a	1352	1165	8.63 (1H, s, H-2); 7.68 (1H, dd, $J_{4,6} = 2.1$, $J_{4,5} = 8.9$, H-4); 7.25 (3H, m, H-5,6,7); 7.06 (2H, s, C ₆ H ₂); 2.6-C ₆ H ₂ (C <u>H</u> ₃)); 2.23 (3H, s, 4-C ₆ H ₂ C <u>H</u> 3)); 2.23 (3H, s, 2-C ₆ H ₂ C <u>H</u> 3)); 2.23 (3H, s, 2-C ₆ H ₂ C <u>H</u> 3)); 2.23 (3H, s, 2-C ₆ H ₂ C <u>H</u> 3)); 2.23 (3H, s, 2-C ₆ H ₂ C <u>H</u> 3)); 2.23 (3H, s, 2-C ₆ H ₂ C <u>H</u> 3)); 2.23 (3H, s, 2-C ₆ H ₂ C <u>H</u> 3)); 2.23 (3H, s, 2-C ₆ H ₂ C <u>H</u> 3)); 2.23 (3H, s, 2-C ₆ H ₂ C <u>H</u> 3)); 2.23 (3H, s, 2-C ₆ H ₂ C <u>H</u> 3)); 2.23 (3H, s, 2-C ₆ H ₂ C <u>H</u> 3)); 2.23 (3H, s, 2-C ₆ H ₂ C <u>H</u> 3)); 2.23 (3H, s, 2-C ₆ H ₂ C <u>H</u> 3)); 2.23 (3H, s, 2-C ₆ H ₂ C <u>H</u> 3)); 2.23 (3H, s, 2-C ₆ H ₂ C <u>H</u> 3)); 2.23 (3H, s, 2-C ₆ H ₂ C <u>H</u> 3)); 2.23 (3H, s, 2-C ₆ H ₂ C <u>H</u> 3)); 2.23 (3H, s, 2-C ₆ H ₂ C <u>H</u> 3)); 2.23 (3H, s, 2-C ₆ H ₂ C <u>H</u> 3)); 2.23 (3H, s, 2-C ₆ H ₂ C <u>H</u> 3)); 2.23 (3H, s, 2-C ₆ H ₂ C <u>H</u> 3)); 2.23 (3H, s, 2-C ₆ H ₂ C <u>H</u> 3)); 2.23 (3H, s, 2-C ₆ H ₂ C <u>H</u> 3)); 2.23 (3H, s, 2-C ₆ H ₂ C <u>H</u> 3)); 2.23 (3H, s, 2-C ₆ H ₂ C <u>H</u> 3)); 2.23 (3H, s, 2-C ₆ H ₂ C <u>H</u> 3)); 2.23 (3H, s, 2-C ₆ H ₂ C <u>H</u> 3)); 2.23 (3H, s, 2-C ₆ H ₂ C <u>H</u> 3)); 2.23 (3H, s, 2-C ₆ H ₂ C <u>H</u> 3)); 2.23 (3H, s, 2-C ₆ H ₂ C <u>H</u> 3)); 2.23 (3H, s, 2-C ₆ H ₂ C <u>H</u> 3)); 2.23 (3H, s, 2-C ₆ H ₂ C <u>H</u> 3)); 2.23 (3H, s, 2-C ₆ H ₂ C <u>H</u> 3)); 2.23 (3H, s, 2-C ₆ H ₂ C <u>H</u> 3)); 2.23 (3H, s, 2-C ₆ H ₂ C <u>H</u> 3)); 2.23 (3H, s, 2-C ₆ H ₂ C <u>H</u> 3)); 2.23 (3H, s, 2-C ₆ H ₂ C <u>H</u> 3)); 2.23 (3H, s, 2-C ₆ H ₂ C <u>H</u> 3)); 2.23 (3H, s, 2-C ₆ H ₂ C <u>H</u> 3)); 2.23 (3H, s, 2-C ₆ H ₂ C <u>H</u> 3)); 2.23 (3H, s, 2-C ₆ H ₂ C <u>H</u> 3)); 2.23 (3H, s, 2-C ₆ H ₂ C <u>H</u> 3)); 2.23 (3H, s, 2-C ₆ H ₂ C <u>H</u> 3)); 2.23 (3H, s, 2-C ₆ H ₂ C <u>H</u> 3)); 2.23 (3H, s, 2-C ₆ H ₂ C <u>H</u> 3)); 2.23 (3H, s, 2-C ₆ H ₂ C <u>H</u> 3)); 2.23 (3H, s, 2-C ₆ H ₂ C <u>H</u> 3)); 2.23 (3H, s, 2-C ₆ H ₂ C <u>H</u> 3)); 2.23 (3H, s, 2-C ₆ H ₂ C <u>H</u> 3)); 2.23 (3H, s, 2-C ₆ H ₂ C <u>H</u> 3)); 2.23 (3H, s, 2-C ₆ H ₂ C <u>H</u> 3)); 2.23 (3H, s, 2-C ₆ H ₂ C <u>H</u> 3)); 2.23 (3H, s, 2-C ₆ H ₂ C <u>H</u> 3)); 2.23 (3H, s, 2-C ₆ H ₂ C <u>H</u> 3)); 2.23 (3H, s, 2-C ₆ H ₂ C <u>H</u> 3)); 2.23 (3H, s, 2-C ₆ H ₂ C <u>H</u> 3)); 2.23 (3H, s, 2-C ₆ H ₂ C <u>H</u> 3)); 2.23 (3H, s, 2-C ₆ H ₂ C <u>H</u> 3)); 2.23 (3H, s, 2-C ₆ H ₂ C <u>H</u> 3)); 2.23 (3H, s,	300 (68)
8b	1359	1169	7.57 (2H, m, H-4.5); 7.25 (2H, m, H-6.7); 7.05 (2H, s, C ₆ H ₂); 2.43 (3H, s, 2-CH ₃); 2.35 (6H, s, 2.6-C ₆ H ₂ (C <u>H</u> ₃) ₂); 2.26 (3H, s, 4-C ₆ H ₂ C <u>H</u> ₃)	314 (73)
8c	1367	1160	7.61 (2H, m, H-4,5); 7.26 (2H, m, H-6,7); 7.05 (2H, s, C ₆ H ₂); 2.80 (2H, q, $J = 7.4$, 2-CH ₃); 2.34 (6H, s, 2.6-C ₆ H ₂ (C <u>H₃)</u>); 2.26 (3H, s, 4-C ₆ H ₂ C <u>H₃); 1.17 (3H, t, $J = 7.4$, 2-CH₂C<u>H₃)</u>;</u>	328 (61)
8d	1366	1162	7.63 (2H, m, H-4,5); 7.28 (2H, m, H-6,7); 7.07 (2H, s, C ₆ H ₂); 2.78 (2H, t, $J = 7.3$, 2-CH ₂); 2.35 (6H, s, 2.6-C ₆ H ₂ (C <u>H₃)₂); 2.27 (3H, 4-C₆H₂CH₃); 1.61 (2H, q, $J = 7.3$, 2-CH₂(H, $t, J = 7.3$, 2-C₂H₄CH₃); 2.35 (6H, s, 2.6-C₆H₂(C<u>H₃)₂); 2.27 (3H, 4-C₆H₂CH₃); 1.61 (2H, q, $J = 7.3$, 2-CH₂(H); $J = 7.3$, 2-C₂H₄CH₃); 2.25 (6H, s, 2.6-C₆H₂(C<u>H₃)); 2.25 (6H, s, 2.6-C₆H₂(CH₃)); 2.25 (6H, s, 2.6-C₆H₂(CH₃))</u></u></u>	342 (38)
8e	1364	1165	7.65 (2H, m, H-4,5); 7.27 (2H, m, H-6,7); 7.08 (2H, s, C ₆ H ₂); 2.77 (2H, t, $J = 7.3$, 2-CH ₂); 2.36 (6H, s, 2.6-C ₆ H ₂ (C <u>H₃)</u>); 2.27 (3H, s, 4-C ₆ H ₂ C <u>H₃</u>); 1.51 (2H, m, 2-CH ₂); 1.22 (2H, m, 2-C ₂ H ₄ C <u>H₂</u>); 0.78 (3H, t, $J = 7.4$, 2-C ₃ H ₆ C <u>H₃</u>);	356 (18)

*¹H NMR spectra were taken in CD₃OD (compounds **5a-e**, **7a-e**, **8a-e**) or CDCl₃ (compounds **3a-e**, **4a-e**, **6a-e**).

EXPERIMENTAL

The IR spectra of nujol suspensions of compounds were taken on a Perkin-Elmer 2000 Fourier spectrometer, and the ¹H NMR spectra on a Unity 400^+ (400 MHz) spectrometer, internal standard was TMS. The mass spectra were recorded on a Kratos MS-30 instrument with direct insertion of sample into the ion source (ionization energy 70 eV). A check on the progress of reactions and the homogeneity of the synthesized compounds was effected by TLC on Silufol UV-254 plates in the solvent system benzene–acetone, 10:1, the developer was a solution of KMnO₄ (1 g) in H₂SO₄ (4 ml) and H₂O (96 ml).

2-Alkylbenzimidazoles 2a-e (General Method). A mixture of compound **1** (1.38 g, 10 mmol), the appropriate carboxylic acid (60 mmol), iron powder (1.68 g, 30 mmol) and 32% HCl (10 ml) was heated to 70°C. After the end of the vigorous evolution of hydrogen the mixture was maintained at the same temperature for 1 h, and then at 90-100°C for 2 h. The reaction mixture was cooled, 20% NaOH solution was added to pH 9-10, the precipitated solid was filtered off, and washed with water until neutral reaction. Alcohol (20 ml) was added to the washed solid, the mixture was boiled for 1 h, and filtered without cooling. Alcohol (~10 ml) was distilled from the filtrate, the residue was diluted with three volumes of water, the resulting product **2** was filtered off, and recrystallized from the appropriate solvent. The melting points of the synthesized compounds **2a-e**, and of samples of them obtained by cyclization of *o*-phenylenediamine with carboxylic acids [10], coincided.

2-Alkyl-1-arylsulfonylbenzimidazoles 3a-e to 8a-e (General Method). A solution of compound **2** (10 mmol) and triethylamine (1.11 g, 11 mmol) in acetone (30 ml) was added dropwise to a solution of the appropriate arene sulfonyl chloride (11 mmol) in acetone (20 ml). The reaction mixture was stirred at room temperature for 4 h, the acetone was then distilled, and water (50 ml) was added to the residue. The solid product obtained of **3a-e** to **8a-e** was filtered off and recrystallized from the appropriate solvent.

REFERENCES

- 1. D. A. Dushamov, N. S. Mukhamedov, N. A. Aliev, Kh. M. Bobokulov, M. G. Levkovich, and N. D. Abdullaev, *Khim. Geterotsikl. Soedin.*, 503 (2002). [*Chem. Heterocycl. Comp.*, **38**, 438 (2002)].
- 2. M. Negwer and H. G. Sharnow, Organic-Chemical Drugs and Their Synonyms, 8 Extensiv. Enlarg. Ed., Wiley-VCH Verlag, Weinhein (2001).
- 3. V. Klimesova, J. Koi, K. Waisser, and J. Kaustova, *Farmaco*, 57, 259 (2002).
- 4. J. Koci, V. Klimesova, K. Waisser, J. Kaustova, H. M. Danse, and U. Möllman, *Bioorg. Med. Chem. Lett.*, **12**, 3275 (2002).
- 5. M. Guardiola-Diaz, L. A. Foster, D. Mushrush, and D. N. Vaz, *Biochem. Pharmacol.*, 61, 1463 (2001).
- 6. O. Geban, H. Ertepinar, and S. Oezden, *Pharmazie*, **51**, 34 (1996).
- 7. A. A. Umarov, N. P. Loi, Ch. Sh. Kadyrov, and A. T. Ayupova, Agrokhimiya, No. 7, 123 (1973).
- 8. A. A. Umarov, *Benzimidazoles, Their Regulating Properties and Functions*, Fan, Tashkent (1990), p. 132.
- 9. H. Foks, D. Pancechowska-Ksepko, W. Kuzmierkewicz-Kopec, Z. Zwolska, E. Augustynowicz-Kopec, and M. Janowiec, *Khim. Geterotsikl. Soedin.*, 697 (2006). [*Chem. Heterocycl. Comp.*, 42, 611 (2006)].
- 10. A. T. Ayupova, Diss. Cand. Chem. Sci., Tashkent (1973).